Fridrichsons, J., Mathieson, A. McL. \& Sutor, D. J. (1960). Tetrahedron Lett. pp. 35-37.
Fridrichsons, J., Mathieson, A. McL. \& Sutor, D. J. (1963). Acta Cryst. 16, 1075-1085.
Geissman, T. A. (1959). Aust. J. Chem. 12, 247-254.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mackay, M. F. \& Culvenor, C. C. J. (1982). Acta Cryst. B38 2754-2758.
Pérez-Salazar, A., Cano, F. H. \& García-Blanco, S. (1978). Cryst. Struct. Commun. 7, 105-109.
Rohrer, D. C., Karchesy, J. \& Deinzer, M. (1984). Acta Cryst. C40, 1449-1452.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stoeckll-Evans, H. \& Crout, D. H. G. (1976). Helv. Chim. Acta 59, 2168-2178.

Acta Cryst. (1988). C44, 1947-1949

Structure of 6-Methyl-4-phenyl-8-phenylmethylene-3,4,5,6,7,8-hexahydro-2(1H)quinazolinethione

By Gyula Argay and Alajos Kálmán*
Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, PO Box 17, H-1525 Hungary
Tamás Lóránd
Department of Chemistry, University Medical School of Pécs, Pécs, PO Box 99, H-7601 Hungary
and András Földesi
Central Research Laboratory, University Medical School of Pécs, Pécs, PO Box 99, H-7601 Hungary

(Received 11 February 1988; accepted 20 June 1988)

Abstract

C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}, M_{r}=346 \cdot 50\), monoclinic, $P 2_{1} / c$, $a=15.919$ (1), $b=6.320$ (1), $c=19.039$ (2) $\AA, \beta=$ $105.00(1)^{\circ}, \quad V=1850.2(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.24 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \bar{\alpha})=1.54184 \AA, \quad \mu=$ $0.154 \mathrm{~mm}^{-1}, F(000)=736, T=296(1) \mathrm{K}, R=0.047$ for 3348 observed reflections. Only X-ray analysis could reveal the stereochemistry of the title compound furnished by the reaction of 2,6-dibenzylidene-4methylcyclohexanone with thiourea. It has been shown to be the diastereomer in which the 4 -phenyl moiety is bound axially while the 6 -methyl group assumes an equatorial position.

Introduction. Earlier we have studied the reactions of 2,6-diarylidenecyclohexanones with thiourea in basic media (Lóránd, Szabó \& Neszmélyi, 1977). Now, these investigations have been extended over the cyclo-hexane-ring-substituted $\quad 2,6$-diarylidenecyclohexanones. The reaction of 2,6 -dibenzylidene- 4 -methylcyclohexanone (1) with thiourea yielded 6 -methyl-4-phenyl-8-phenylmethylene-3,4,5,6,7,8-hexahydro2(1 H)-quinazolinethione (2). According to ${ }^{1} \mathrm{H}$ NMR spectra of (2) only one diastereomer is formed, which is depicted in the reaction scheme. However, on the basis

[^0]0108-2701/88/111947-03\$03.00
of the ${ }^{1} \mathrm{H}$ NMR studies we could not decide on the two possible isomers. Furthermore, we were also interested in the stereochemistry of 4 -phenyl-8-phenyl-methylene-3,4,5,6,7,8-hexahydro-2($1 H$)-quinazolinethione, studied earlier (Lóránd, Szabó \& Neszmélyi, 1977). Therefore, an X-ray analysis of (2) (melted at 384-387 K) has been performed.

(1)

(2)

Experimental. Colourless crystals of which a sample of dimensions $c a 0.17 \times 0.34 \times 0.56 \mathrm{~mm}$ was mounted on a CAD-4 diffractometer equipped with graphite monochromator. Cell constants were refined by leastsquares fit for 25 centred reflections collected in the range $20 \leq \theta \leq 39^{\circ} . \omega / 2 \theta$ scan in the range $0.017 \leq$ $(\sin \theta) / \lambda \leq 0.626 \AA^{-1}$ with scan width $0.45^{\circ}+$ $0 \cdot 30^{\circ} \tan \theta .3801$ unique, non-zero and not systematically absent ($h 0 l l=2 n+1$, and $0 k 0 k=2 n+1$ for space group $P 2_{1} / c$) reflections were recorded with $h: 0$ to $19, k: 0$ to 7 and $l:-23$ to 23 , of which - after © 1988 International Union of Crystallography

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $B_{\text {eq }}\left(\AA^{2}\right)$ for the nonhydrogen atoms with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3} \operatorname{trace}(B \mathbf{G})$ where \mathbf{G} is the direct metric tensor.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
S	0.61099 (2)	0.17947 (8)	-0.02549 (2)	3.618 (4)
N(1)	0.7409 (1)	-0.0682 (2)	0.0426 (1)	3.08 (1)
N(3)	0.6066 (1)	-0.1580 (3)	0.0562 (1)	3.86 (1)
C(2)	0.6540 (1)	-0.0280 (3)	0.0275 (1)	$3 \cdot 12$ (1)
C(4)	0.6385 (1)	-0.3278 (3)	$0 \cdot 1083$ (1)	$3 \cdot 24$ (1)
C(4a)	0.7328 (1)	-0.3737 (3)	0.1137 (1)	2.97 (2)
C(5)	0.7706 (1)	-0.5630 (3)	$0 \cdot 1576$ (1)	3.37 (2)
C(6)	0.8683 (1)	-0.5476 (3)	$0 \cdot 1871$ (1)	2.93 (2)
C(7)	0.9086 (1)	-0.4850 (3)	0.1259 (1)	2.89 (2)
C(8)	0.8743 (1)	-0.2770 (3)	0.0914 (1)	2.60 (2)
C(8a)	0.7804 (1)	-0.2448 (3)	0.0831 (1)	2.71 (2)
C(9)	0.6257 (1)	-0.2755 (3)	$0 \cdot 1826$ (1)	3.25 (1)
C(10)	0.5883 (1)	-0.4206 (4)	0.2196 (1)	4.33 (1)
C(11)	0.5821 (1)	-0.3811 (4)	0.2894 (1)	5.84 (1)
C(12)	0.6118 (1)	-0.1956 (5)	0.3227 (1)	6.73 (2)
C(13)	0.6473 (2)	-0.0474 (4)	0.2858 (1)	6.70 (5)
C(14)	0.6548 (1)	-0.0877 (4)	0.2164 (1)	4.72 (3)
C(15)	0.9066 (1)	-0.7517 (3)	0.2244 (1)	3.77 (3)
C(16)	0.9248 (1)	-0.1265 (3)	0.0738 (1)	2.86 (2)
C(17)	1.0203 (1)	-0.1287 (3)	0.0843 (1)	2.67 (2)
C(18)	1.0674 (1)	-0.3016 (3)	0.0698 (1)	$3 \cdot 14$ (2)
C(19)	1.1568 (1)	-0.2915 (3)	0.0815 (1)	3.61 (1)
C(20)	1.2012 (1)	-0.1092 (3)	$0 \cdot 1088$ (1)	3.77 (1)
C(21)	1.1559 (1)	0.0642 (3)	$0 \cdot 1228$ (1)	3.74 (2)
C(22)	1.0663 (1)	0.0555 (3)	$0 \cdot 1094$ (1)	$3 \cdot 18$ (2)

Fig. 1. Perspective view of the molecule with atomic numbering. Bare numbers are for carbon atoms unless indicated otherwise. H atoms are shown but not labelled.
data correction - 3348 with $I \geq 3 \sigma(I)$ were taken as observed. Three standard reflections (008, 440, 743) were monitored every hour and showed no loss or gain in intensity during data collection. The phase problems were solved by the MULTAN82 program (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982) using $275 \geq E$ normalized structure factors. Full-matrix least-squares refinement minimized the $\sum w(\Delta F)^{2}$ function for 227 variables with $w=4 F_{o}{ }^{2} / \sigma\left(F_{o}{ }^{2}\right)^{2}$. At the end of the isotropic refinement an empirical absorption

Table 2. Bond distances (\AA) and bond angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

S-C(2)	1.688 (2)	$\mathrm{C}(8)-\mathrm{C}(16) \quad 1.3$	1.344 (2)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.361 (1)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$.	1.382 (3)
$\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})$	1.408 (2)	$\mathbf{C}(9)-\mathrm{C}(14) \quad 1.3$	$1 \cdot 372$ (3)
N(3)-C(2)	1.326 (2)	$\mathbf{C}(10)-\mathbf{C}(11) \quad 1.3$	1.380 (3)
N(3)-C(4)	1.460 (2)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$.	1.358 (4)
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})$	1.506 (2)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	1.377 (4)
C(4)-C(9)	1.517 (2)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$.	1.382 (3)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)$	1.494 (2)	$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$.	1.481 (2)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(8 \mathrm{a})$	1.344 (2)	$\mathrm{C}(17)-\mathrm{C}(18) \quad 1$.	1.392 (2)
C(5)-C(6)	1.514 (2)	$\mathrm{C}(17)-\mathrm{C}(22) \quad 1$.	1.393 (2)
C(6)-C(7)	1.521 (2)	$\mathrm{C}(18)-\mathrm{C}(19) \quad 1$.	1.383 (2)
C(6)-C(15)	1.522 (3)	$\mathrm{C}(19)-\mathrm{C}(20) \quad 1$.	1.381 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.507 (2)	$\mathrm{C}(20)-\mathrm{C}(21) \quad 1$.	1.375 (3)
C(8)-C(8a)	1.475 (2)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1$.	1.383 (2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})$	123.3 (2)	$\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(4 \mathrm{a})$	119.7 (2)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	126.9 (2)	$\mathrm{N}(1)-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)$	117.7 (2)
$\mathrm{S}-\mathrm{C}(2)-\mathrm{N}(1)$	120.3 (2)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)$	122.6 (2)
$\mathrm{S}-\mathrm{C}(2)-\mathrm{N}(3)$	122.8 (2)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	120.7 (3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	116.9 (2)	$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)$	121.0 (3)
$N(3)-C(4)-C(4 a)$	110.7 (2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	118.2 (3)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	111.4 (2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.2 (3)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(9)$	110.5 (2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 120.2 (4)
C(4)-C(4a)-C(5)	116.2 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 119.2 (4)
C(4)-C(4a)-C(8a)	121.1 (2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 120.8 (4)
C(5)-C(4a)-C(8a)) 122.6 (2)	C(9)-C(14)-C(13)	120.4 (3)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)-\mathrm{C}(6)$	112.4 (2)	$\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{C}(17)$	128.3 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	109.3 (2)	C(16)-C(17)-C(18)) 124.5 (2)
C(5)-C(6)-C(15)	111.6 (2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(22)$) 117.9 (2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(15)$	112.3 (2)	C(18)-C(17)-C(22)) 117.5 (2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	112.5 (2)	C(17)-C(18)-C(19)) 121.0 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})$	114.2 (2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$) 120.3 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$	123.6 (2)	C(19)-C(20)-C(21)) 119.7 (3)
$\mathrm{C}(8 \mathrm{a})-\mathrm{C}(8)-\mathrm{C}(16)$) 122.1 (2)	C(20)-C(21)-C(22)) 120.0 (3)
		C(17)-C(22)-C(21)) 121.4 (3)

correction was applied by the DIFABS program (Walker \& Stuart, 1983); max. and min. relative transmission coefficients were 1.317 and 0.680 . Final $R=0.047, w R=0.063, R_{\text {tot }}=0.054, S=6.25$. Max. and min. peak heights in the final $\Delta \rho$ map $0.45(4)$ e $\AA^{-3},(\Delta / \sigma)_{\max }=0 \cdot 1$. Positions of H atoms bound to C atoms were generated from assumed geometries; those belonging to N atoms were located in a difference Fourier map; they were added to the structure-factor calculations with a mean isotropic temperature factor $\left(B_{i \mathrm{H}}=B_{i X}+1 \AA^{2}\right.$ where $X=\mathrm{C}$ or $\mathrm{N})$. Scattering factors were taken from the applied program system: Enraf-Nonius (1983) SDP-Plus adapted to a PDP $11 / 34$ minicomputer with local modifications.

Discussion. Atomic coordinates of non-H atoms are in Table 1.* The molecular geometry with atomic numbering is shown in Fig. 1. Bond lengths and angles are given in Table 2.

[^1]The partly saturated pyrimidine-2-thione ring assumes a rather flattened envelope conformation [Cremer \& Pople's (1975) puckering parameters if the atomic sequence is chosen from $\mathrm{N}(1)$ through $\mathrm{C}(2) \ldots$ to $\mathrm{C}(8 \mathrm{a}): \quad Q=0.114(2) \AA, \quad \varphi=171.2(10), \quad \theta=$ $\left.70.4(9)^{\circ}\right]$ with $C(4)$ on the flap to which the phenyl ring is bound pseudoaxially $[C(9)-C(4)-N(3)-C(2)$ $\left.=110.3(3)^{\circ}\right]$. The planar thiourea moiety is characterized by the $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ multiple bonds similar to those found in other structures. The relevant difference between the lengths of $C(2)-N(1)$ and $C(2)-N(3)$ multiple bonds $[\Delta=0.035$ (2) \AA] can be attributed to the difference in the hybridization of the adjacent carbon atoms $\mathrm{C}(8 \mathrm{a})-s p^{2}$ vs $\mathrm{C}(4)-s p^{3}$. The carbo ring of the quinazoline skeleton due to the three $s p^{3} \mathrm{C}$ atoms possesses a slightly distorted [puckering parameters if the atomic sequence is chosen from $C(4 a)$ through $\mathrm{C}(5) \cdots$ to $\mathrm{C}(8 \mathrm{a}): Q=0.471$ (2) $\AA, \quad \varphi=316.9$ (3), $\left.\theta=130.3(2)^{\circ}\right]$ half-chair shape. $\mathrm{C}(6)$ with the highest out-of-plane displacement $[0.317$ (2) \AA] from the leastsquares plane of the ring bears the methyl substituent in an equatorial position $[C(15)-C(6)-C(7)-C(8)=$ $-177.0(3)^{\circ} \mathrm{J}$.

In the crystal lattice centre-of-symmetry-related pairs of molecules form dimer associates with the hydrogenbond parameters

$$
\begin{array}{cccc}
& D \cdots A(\AA) & \mathrm{H} \cdots A(\mathrm{X}) & D \mathrm{H} \cdots A\left(^{\circ}\right) \\
\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{S}(1-x,-y,-z) & 3.362(3) & 2.40(2) & 159(1) .
\end{array}
$$

We thank Mr Cs. Kertész for technical assistance and the Ministry of Health, Budapest, Hungary, for financial support.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1983). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Lóránd, T., Szabó, D. \& Neszmélyi, A. (1977). Acta Chim. Acad. Sci. Hung. 93, 51-65.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structures of Thiamine Hexafluorophosphate Monohydrate, Thiaminium Diperchlorate, Thiaminium Bis(hexafluorophosphate) Tetrahydrate, and Thiaminemonophosphate Hexafluorophosphate Dihydrate

By Katsuyuki Aoki and Hiroshi Yamazaki
The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01, Japan
and Koji Waragai and Hideji Itokawa
Tokyo College of Pharmacy, Hachioji-shi, Tokyo 192-03, Japan

(Received 24 February 1988; accepted 14 June 1988)

Abstract

C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OS}^{+}\). PF $_{6}^{-} . \mathrm{H}_{2} \mathrm{O}$ (1), $M_{r}=428.336$, monoclinic, $P 2_{1} / n, \quad a=12.968$ (2), $\quad b=11.381$ (2), $c=12.335$ (3) $\AA, \quad \beta=92.71(2)^{\circ}, \quad V=1818.5$ (6) \AA^{3}, $Z=4, D_{x}=1.564 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu$ $=3.28 \mathrm{~cm}^{-1}, F(000)=880, T=293 \mathrm{~K}, R=0.047$ for 2522 reflections; $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}^{2+} .2 \mathrm{ClO}_{4}^{-}$(2), $\quad M_{r}=$ 465.265, monoclinic, $P 2 / / n, \quad a=18.728$ (5), $b=$ 7.683 (1), $\quad c=13.968$ (3) $\AA, \quad \beta=101.87$ (2) ${ }^{\circ}, \quad V=$ 1966.9 (7) $\AA^{3}, Z=4, \quad D_{x}=1.571 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)$ $=4.82 \mathrm{~cm}^{-1}, F(000)=960, T=293 \mathrm{~K}, R=0.064$ for 2771 reflections; $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}^{2+} .2 \mathrm{PF}_{6}^{-} .4 \mathrm{H}_{2} \mathrm{O}$ (3), M_{r} $=628.351$, monoclinic, $P 2_{1} / a, a=11.198$ (2), $b=$ 26.659 (7), $\quad c=8.407$ (2) $\AA, \quad \beta=90.03$ (2) ${ }^{\circ}, \quad V=$ $2510.0(9) \AA^{3}, Z=4, \quad D_{x}=1.663 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)$

0108-2701/88/111949-07\$03.00 $=3.65 \mathrm{~cm}^{-1}, \quad F(000)=1280, T=293 \mathrm{~K}, R=0.060$ for 2190 reflections; $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{PS}^{+} . \mathrm{PF}_{6}^{-} .2 \mathrm{H}_{2} \mathrm{O}$ (4), $M_{r}=526.330$, triclinic, $P \mathrm{I}, \quad a=11.633(1), \quad b=$ 11.255 (2),$\quad c=8.441$ (2) $\AA, \quad \alpha=78.80$ (2),$\quad \beta=$ 94.90 (1), $\gamma=103.63$ (1) ${ }^{\circ}, V=1052.7$ (3) $\AA^{3}, Z=2$, $D_{x}=1.679 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)=3.84 \mathrm{~cm}^{-1}, F(000)=$ $540, T=293 \mathrm{~K}, R=0.045$ for 3092 reflections. In each compound, the thiamine moiety that adopts the F conformation holds a monovalent anion in a position in which the anion interacts with the thiazolium ring via a hydrogen bond with the acidic $\mathrm{C}(2) \mathrm{H}$ and an electrostatic interaction with the positively charged $\mathbf{S}(1)$ atom, and it further contacts, possibly electrostatically, with the pyrimidine (or pyrimidinium) ring. © 1988 International Union of Crystallography

[^0]: * To whom all correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51157 (21 pp .). Copies may be obtained through The Executive Secretary, International Union of of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

